The KGI Project
1/35

Proposal for Open Source Graphic Systems
v1.3

Written by Brian S. Julin (2004)
Prepared by Nicholas Souchu (2005)

History of modifications

The KGI Project
21/35

Page
All

P5
Most

Most

Description

copy (formated under OpenOffice.org v1.1.3)
of the original proposal of Brian S. Julin

Add 5) in layer 1 needs

Formating

Cleaned up grammar, clarified some areas, and
added verbiage on implications for highly
parallel CPU cores.

The KGI Project
3/35

1.Introduction

The following proposal is not presented as an immediate goal for Open Source graphics systems. The
author fully expects that most readers will deem it to be prohibitively difficult to implement, and full of
open questions and omissions. It is, rather, presented as look at the general direction towards which all
Open Source graphics systems are in fact, slowly evolving. Consider it a work of extrapolative
fiction... it may very well be the case that nothing like this is ever realized, but parts of it likely will be
in one form or another. The author's objective in presenting it as such is merely to provide a common
framework for discussion among Open Source developers.

One of the major problems facing Open Source development of graphics systems is the confusion
caused by minced terms. Words like "screen," "display", "device", "viewport" and "mode" have very
specific, sometimes rather divergent, meanings in existing solutions and proposals. Often this is the
result of functionality being attached to a concept simply because it exists as an opportune code object,
without regard to the resulting semantics. As such, their use is avoided where ambiguous, and a new
vocabulary is adopted. If nothing else comes of this work, the author hopes this new vocabulary can be
used to elucidate discussions on the general topic of graphics systems development. (This new
vocabulary appears typographically as underlined text.)

Much of this proposal is, in concept, not very original. Ideas from various Open Source projects and
discussion forums that the author has worked with or lurked around for several years are incorporated.
Thus there are actually many contributors, both knowing and unknowing, to this proposal -- too many,
in fact, to list or even recall. The author must settle for extending his thanks to all those who take the
time to apply serious thought to the complex problem which faces Open Source in developing a
graphics hardware system appealing to the development community.

The three main sections that follow describe a different “layer” of hardware graphics systems. Each
starts with a prelude in a question/answer format. The reader is encouraged to consider each question
on his or her own before reading the suggested answer. The answers attempt to justify some judgment
calls made by the author, who would appreciate hearing any alternative perspectives. Building upon
the issues raised therein, the section continues by describing the purpose of the layer and the concepts
and structures necessary to support an implementation of the desired behavior.

The KGI Project
4735

2.Copyright and License

This proposal is Copyright (c) 2004 Brian S. Julin.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts, and no Back-Cover Texts. A copy of the license is included in the
section entitled "GNU Free Documentation License".

The KGI Project

5735

Table of contents
L 015 (o Ta LT 5 (o) o SRS SURPPI 2
2.COPYTIZht AN LICENSE.vveiiiiiieiieeeiie ettt ettt e et e e sttt e st e e eabbee e sabbeeesaabeeeeabeeesnnbeeas 2
BUFIEST LLAYET ..ttt ettt et et a e s e e e 4
WRHAL'S NEEACAY......ceeiiiieee ettt ettt et e sbe e bttt e st esat e e e e 4
Layer 1 SUMMATYccc.uiiiiiiieiiieee ettt ettt e sttt e st e e it b e e s bt e e saatbeesabaeesbbeeesareeenas 5
OVETVIEW Of JAYET 1 ODJECES. ceuuuiieiiiiieiiieeiiie ettt ettt e ettt e st e e st ee e s abteesabeeesasaeessnseeennsaeenns 5
VAALEL. ...ttt b et ettt e b e sa et e st e e e e 5
SEIK ettt ettt e b e e bt e bt e st e et e naaeenaees 6
CLOCK .ttt ettt et e a e et e s he e et s bttt e s et e b e e bt e e bt e et ba e e naeeenees 6
11 0] 11110 S OO OO OO PP OO PP PROTOPRORPPR 6
PIISIN ..ottt ettt b et e bbbt st et e e 6
51| SRR 6
Description Of VAlEt OPEIAtION.ccecuiiieriiieeiiiee ettt et ee et e e e e e sibeeesbeeeeeaeeeeaaeeesnsaaeesnneeeans 6
Description Of SINK OPETAtION........ccccviiieiiieeiiieeeiieeeeieeeetee e eiteeesteeesteeeestaeeessbeeessseeeesseeesssseeeesseeeans 8
A .SECONA LLAYCT.....eeetiiieiieeeiteeeee ettt et e et e ettt e et e e st e e s bteesabeeesaseeesaseeeassaaeensseeennsaeeensseeenssaeenns 11
What's NEEAEAY.......eeiiiiiiie e ettt e e et e e e et e e e ssaatteee e e nsaeeeeenssssaeesennssaeeeeanns 11
LAYET 2 SUIMIMIATY ..ottt e e e et e e e sttt e e e s s sttt eeeeeaaseteeesassbeeeesenseeeesannns 13
OVErVIEW Of LAYET 2 ODJECTS.eeiiuiiiiiiiieeeiieeee ettt ettt e st e e e te e e e aeeees 13
] F OO OO OO OO PURUPRIUPRPPRRPRRPON 13
SO ettt ettt ettt et e bt et e e e e e e et e ean e e eae e et e e ene e saneenneens 13
STIA. .ttt ettt et b et e bt e e bt e bt e a bt e e hbe e eate e ehbe e bt eebeesabeenarean 13
| I51C) 41 PP UPPRR 13
Description Of 10T OPEIALION.......ccocuttiiiiiiiiieet ettt et e st e st e e et e e s bt e e e abeeeeneees 14
Description of SpOt/SIIAE OPETAtION..........ueiiiuiiiiiiiiiiieieite ettt ettt e e e e eesaeees 14
Description Of 18NS OPETAtION.ceiiutiiiiiiiiiitieeiie ettt ettt e et e e st e et e s bt e sbaeesabaees 14
SUTRITA LLAYET..ceeitieeiiie ettt ettt e s et e et e et ee e bt e e e bt eeeabbeesabbeesabaeesaseeesabeeenaseeesanee 15
What's NEEAEAT........eee ettt e et e e e e et e e e e atbeeeeessssseeeeeassaeeeeessssseaeeesnssseaeeanns 15
SUMMATY Of TAYET 3...ciiiiiiiiiiee ettt e et e et e e sttt esabteesabbeeesbaeesasbeesnsneeeens 18
OVETVIEW Of JAYET 3 ODJECES. c..uvtiiiiiiiiiiieeiie ettt ettt st e st e e sabe e e st eesibeeesaeeas 18
2 S [OOSR PSRRRUPPRRRRPRO 18
|2 (T [0 111 T PO PPOPPPRRPPPPO 19
CONLTOL DLOCK. ...ttt et ettt eat e ettt e sbeesbeenaneens 19
Description Of €XE€Q OPETALION.uiieriiieiriieeeiteeeiteee ettt e sttt e ssitteeesiteeestbeeeeabaeesabeeesnseeesnsaeesnseeas 19
Description of control blOCK OPEIation...........c.ceeciieeiiiiiiiiiieiiie ettt e eeaee e 19
Description of €Xeq CONEXt OPETALION.eieriiieeiieeeiteeriteeeiteesteeestteessateesnteessabeeessaeessseesssseessnseees 21
Description Of the €Xeqd "PrOCESS"......uviierieeriiieeiieeeerteeeertee et e e e raee e eribreeesebaeeesabeeeennbaeesnseaeenseeas 22

6. APPENDIXoiiiiiiiiie ettt ettt sttt e 24

The KGI Project
6/35

3.First Layer
What's needed?

Q. Whatshouldthe behaviorof a systembewhena monitoris movedfromoneportto another?

A. Most users do not expect applications to follow monitors, but rather to be tied to a monitor port. As
a practical consideration, moving applications from one GPU to another is extremely complicated, even
when the GPUs are of the same make and model. The answer here is clearly that applications remain
tied to the monitor port, not to the monitor.

Q. Whatshouldbethebehaviorof the systemwhena monitoris removedand replacedwith a different
monitor?

A. Users will want this to be a fairly dumbed-down process, so we should attempt to allow applications
to run uninterrupted during this process. Users will expect that display of the application will be
restored when the new monitor is detected, and will expect that they can run applications with the
monitor detached without suffering a pause. That's just the way computers have always worked in
everyday situations and people have come to consider it normal behavior.

From the user's perspective, this seems very simple, and in naive implementations it is, more or less.
A mature system takes less for granted, and in so doing deals with complexities that more primitive
systems ignore. Specifically we have the following situations to deal with:

Q. What should happen if the new monitor cannot support the refresh rate of the
application that was running on the monitor it replaced?

In this case the resolution should be preserved, but the refresh rate should be reduced. Advisory
feedback to the application(s) must be delivered. Some applications will simply ignore this as they do
not engage in any more complex real-time management than simply waiting for refreshes. Others, like
3D games or video multimedia, may need to adjust internal scheduling parameters. Some may wish to
reduce resolution in order to preserve the ergonomic properties of the display. As impact on the
application is likely to affect only performance, not impact usability, advisory feedback should be
sufficient.

An inferior alternative would be to switch graphics consoles to an application more compatible with the
new monitor, disabling display of the incompatible application until user intervention is performed.

Q What if the new monitor does not support the full resolution which the old monitor
was providing to the application?

In this case, we should attempt to still display as much of a subarea of the running application as we
can. Advisory feedback must be sent to the running application(s). We might consider providing a user
with an emergency method to advise the application to pause/resume.

Q. What if the previously running application is just plain incompatible with the new

The KGI Project
71735

monitor?

(This could happen if the new monitor places restrictions on other factors such as bitdepth that make
displaying the application impossible, or we have to reduce resolution but the graphics chipset is old
and cannot display a subarea without affecting the GPU operation, because of interdependency with
CRTC registers.)

In this case, a message should be displayed on the monitor indicating that the system is aware of its
presence, but that the application must make adjustments before it may resume displaying. Before
displaying such a message, however, feedback must be sent to the running application(s). If the
application cannot continue to run while the message is displayed, we wait for a certain interval for the
application to acknowledge that it has ceased accessing the graphics system. If that acknowledgment
does not come in a reasonable amount of time, mandatory feedback which pauses the application is
applied, and will not be lifted until the situation is resolved. Then we display the message. (On some
systems, this process shares some of the same infrastructure as graphics console switching.)

If it is impossible to determine the characteristics of a new monitor, we fall back to a safe mode and
propose a list of modes commonly supported by monitors (VESA modes for example) and the
application is notified in the following sequence: first that it is no longer being displayed while the user
chooses its mode, second that it is displayed in a different mode/bitdepth. If the user cannot find a
correct mode for its application, the system can propose to either: fall back to a different application on
this monitor with the current settings (holding the application in “not displayed” status) or kill the
application.

Q. What if the application cannot even cope with the removal of the first monitor?

It may be impossible to place the monitor port into a safe mode, and/or to perform monitor detection on
the port, without affecting retrace handling for the underlying application (or again in the case of older
hardware where there is interdependency between GPU and CRTC/DAC registers, affecting the GPU
operation.)

We proceed as above, advising and then halting the application, before we begin probing for new
monitors. Note the time constraints here need to be chosen such that the application gets as much time
to react as possible, but without giving the user too much of an opportunity to damage the new monitor
by exposing it to an incompatible signal. 1 to 2 seconds seems a reasonable default.

The KGI Project
8/35

Layer 1 Summary

Layer 1 is concerned with initial and runtime hardware (re)configuration and resource inventory. It
provides the higher layers with notification of reconfiguration events, handles ancillary
communications with monitors, and brokers all requests for access to resources such as VRAM and
GART mappings. (The last point was not addressed in the above Q&A.)

Author's Note: In this section, I intentionally skip the whole "bus abstraction" discussion as far as
enumerating devices and how such enumeration is presented to the user or system administrator. I of
course have some opinions on this, but the discussion for some reason always seems to become a
distraction. Besides, it represents a policy decision that has implications far outside the graphics
driver system. Normally the below would also include such material, but suffice to say, whatever
mechanism or structure is decided upon to handle initialization and hotplug, and whether this happens
in user or kernel space: chipset-specific code must be located, that code must examine the
characteristics of the hardware, it must create instances of the below objects as appropriate, and any
information needed by the user or system administrator must be made accessible to userspace.

Overview of layer 1 objects

Valet

A "valet" object represents a type of storage or aperture that is made available for assignment to the
kernel or application, examples being VRAM, MMIO aperture, and GART. Valets are responsible for
keeping track of the amount and organization of each resource available, fielding requests for
allocation, and programming underlying hardware to tie together aperture(s) and storage into working
address spaces.

Sink

A "sink" object represents a monitor port on a graphics device -- not the monitor itself, the port it plugs
into. (In the case of laptop LCDs the sink is still there, it's just not physically accessible to the user.)
There is one sink per port, whether or not the port shares any resources with other ports. Sinks have
many responsibilities described in more detail below.

Clock

A "clock" is an optional slave object of a sink which is simply a way to modularize support for
common clock chipsets that are found on video hardware with different driver codebases.
Monitor

A "monitor" object represents a physical monitor (CRT, LCD, etc.), and that is meant precisely. If you
take one physical monitor off of a sink, and plug another one in, the second physical monitor is not

The KGI Project
9735

represented by the same monitor instance. In this respect they are handled similarly to a simple USB
device -- they can be moved from sink to sink and, when feasible, the instance data can be made to
persist and follow the physical device. The monitor object's primary responsibility is to prevent the
physical monitor's electronics from being overdriven by the sink.

Prism

A "prism" object represents the circuitry that converts framebuffer data into signals that can be output
through a sink to a monitor. This includes RAMDACS and ratiometric expanders. The prism object's
primary responsibilities are to protect these electronics from being overdriven, and to provide service to
any sinks to which a signal path can be configured.

Lut

A "lut" is a lookup table contained in hardware, usually for palette or gamma-mapping. Instances of lut
objects are used in various places in the proposed design. On level 1, however, a lut object is a simple
accessory object to a sink and represents a final translation, usually performed in the RAMDAC, of
framebuffer pixel values into output levels.

Description of valet operation

The valets on their own represent a separable half of layer 1 functionality. Many valets will be nothing
more than thin wrappers around existing OS facilities, and only serve to unify the calling conventions
of these services.

An operating system will have several valets each serving different types of system resources, and a
few more valets serving different types of resources from each piece of graphics display hardware. The
below list enumerates several types of valet instance that will be found on many systems. Not all of the
valets in the below list are mandatory -- if the developers of an OS decide not to offer one or more of
the below valets, that is their prerogative. Some valets, however, are essential to support certain
graphics hardware in certain modes of operation. The below list makes note of these cases.

1) The "fragmented system RAM" valet can be used to allocate pages of physical system RAM that
are not necessarily consecutive. As requesting such an allocation generates not only the pages
themselves but also a list used to keep track of them, this valet is usually used in combination with
another valet which absorbs the list to create a consecutive mapping. The type of RAM allocated may
also be influenced by what valets are used in combination with this one, for example, using this valet in
combination with the "PCI GART" valet would cause the allocation to be taken only from areas of
RAM that can be made accessible to the PCI bus for bus-mastered transfers.

2) The "contiguous bus DMA RAM" valets are used to allocate physically contiguous blocks of RAM
that are visible from a given system peripheral bus. There would be one for each DMA-capable
peripheral bus present in hardware. These valets must be provided if it is desired to support cards that
have DMA functionality but which have no address remapping facilities like PCI-GART or AGP-

The KGI Project
10/35

GART. Sometimes single pages are sufficient for these purposes. As such, even when an OS does not
support allocation of contiguous pages in these ranges, it may elect to define a valet which serves only
single pages.

3) The "motherboard GART aperture" valet provides a contiguous mapping for RAM acquired from
another valet into the physical address space. This valet is required if support of high performance
operation of AGP cards is desired.

4) The "process virtual address space" valet provides a contiguous mapping for RAM or VRAM
acquired from another valet into the virtual address space of a given userspace process. This valet is
required.

5) The "execqd virtual address space" valet provides a contiguous mapping for RAM or VRAM
acquired from another valet into the virtual address space of the process and/or kernel routine where
GPU command buffers are serialized for output to the GPU. (The term “execqd” will be explained in
the third section.) This valet is pretty much required.

6) The "cache control" valets are used to apply special flags, such as MTRR ranges, to given areas of
storage. The use of write-through can greatly reduce coherency issues and the workarounds needed to
address them, so these valets are strongly encouraged.

7) The "GPU VRAM" valets provide allocation of on-board video RAM storage for a specific graphics
hardware component; there is one for each separate component. These must be provided in order to
access any memory on a given piece of graphics hardware, so they are pretty essential.

8) The "GPU MMIO aperture" valets are companions to each of the "GPU VRAM" valets and
provide mapping of VRAM into the physical address space such that it is visible to post-translated CPU
accesses. This may include MMIO registers, or a separate "GPU MMIO aperture" valet may exist for
such registers. (The two might then be used in combination in situations where the register API can be
moved around inside the GPU's main MMIO aperture.)

9) The "GPU GART" valets provide a peripheral-side mapping of contiguous or fragmented system
physical RAM addresses into the GPU address space, though there may be GPU-specific restrictions
on the use of GPU addresses so created. This valet is necessary in order to support high performance
operation of PCI-Express cards, or the high-end of PCI-based graphics cards.

Inside level 1, valets are passed as arguments to a set of functions that resemble object methods. These
methods would include attempting to allocate storage/aperture in a form closely resembling most OS
page and mapping allocators, temporarily deactivating and reactivating storage/aperture to allow
overlapping allocations to time-share a resource, and query functions about remaining storage and
allocation restrictions. These functions are not intended to be used outside of level 1.

(A level 2 object called a "lot" is used as a bidirectional communications mechanism between layers 1
and 2, and is created simply by requesting a storage allocation from a group of valets simultaneously --

The KGI Project
11/35

how the storage and apertures are tied together is inferred from the list of valets used, and thus this
level of detail is secreted in level 1.)

Description of sink and prism operation

The second separable half of layer 1 centers primarily around the "sink" object, which ties all the other
objects together. The sink object, along with a global table called the "signal switching table",
implements the back end of the layer 2 API which allows layer 2 access to all of the following
functionality:

1) hotplug support as it relates to monitor insertion/removal
2) GPU and monitor power saving system support

3) ancillary monitor communications

4) video signal routing

5) retrace feedback when not supported through accelerator
6) mode setting including ratiometric expansion

One of the most complicated, but essential, structures of this proposed design is the signal switching
table. This table is populated based on information discovered about the hardware by bus detection and
probing, and defines the relationships present between individual prisms, clocks, luts and sinks.

Note that it is possible for a prism to be capable of driving multiple sinks at once, for example when
using a laptop with an external monitor and displaying the same image on both the LCD and the
monitor. It is also possible for a sink to choose between the signal generated by more than one prism,
for example a TV-out port that can choose between framebuffer and hardware decoder. The association
table fully defines which prisms may be routed out of which sinks, and the restrictions surrounding
doing so.

Since many chipsets interface to DDC, palette data, clock chips, and other facilities through the
RAMDAC, the association table must also note whether exclusive access to the prism is needed by a
sink in order to perform:

A) detection of monitor removal/insertion
B) inquiry of monitors (e.g. via DDC)

C) programming of clock objects

D) programming of lut objects

E) power savings functions

F) ancillary monitor communications

This is to prevent use of such functionality from interfering with normal operation of the prism when it
is in use on another sink. On more recent setups (flat panel) monitor setup has started to become

The KGI Project
12/35

detached from the prism, or at least made independently accessible, so this problem is mitigated.

Description of monitor operation

In addition to the signal routing table, Layer 1 maintains information about attached monitors and
administrative policies relating to monitors. This service is supplied through three main constructs:

1) The monitor pool:

The monitor pool is intended to provide policy control by the OS, and persistence of state for
reattached monitors, when desired.

The monitor pool is a list of monitor instances. Monitor instances in this pool are considered not to be
attached to any sink. They can be added to the pool in one of several ways:

A) Defaults pre-installed for kernel boot.
B) Installed by the user/OS.
C) Orphaned instances returned from a sink after physical monitors are removed.

Certain attributes of a monitor instance pertain to how they may be used when they are located in the
monitor pool. The monitor may be compared with probed data in a manner similar to that used, for
example, by input-linux to locate matches for (re)attached monitors. The relevant attributes are:

A) Whether the instance can be garbage collected, and an associated TTL value.
B) Whether the instance is an orphan, a template, or a blacklist.

C) What attributes of the instance should be used to determine if it matches a newly detected
monitor (including don't-cares and inverses)

D) A "preferred" sink may be specified.

When a new monitor is instantiated by a sink, the monitor pool may be searched for a best match. This
is done according to the following ordered set of rules:

A) Blacklist pool entries preferring other sinks are ignored.

B) Other blacklist pool entries are tried. If any of them match, the monitor is considered
unsuitable for use.

C) Orphans that prefer this sink are searched. If any match is found, it is removed from the pool
and reused.

D) Templates preferring this sink are tried. If a match is found, a new instance is created by
copying the template.

E) Other orphans are tried. If a match is found it is removed from the pool and reused. The
preferred sink is changed to the current sink.

F) Templates not preferring any sink are tried.

The KGI Project
13735

G) Templates preferring other sinks are ignored.

2) The timing cache:

A global list of monitor timings is used to cache results, which are truly a menial detail not worth
explaining in depth. It serves only to speed up the process of finding a suitable mode.

3) The monitor communications routine:

The monitor communications routine is a periodic or IRQ driven daemon, tasklet, or whatever fits the
bill best. It iterates across a list of callbacks registered by sinks. These callbacks handle the following
tasks:

A) Detecting monitor removal/insertion

B) Performing inquiry on new monitors

C) Communicating power savings requests to the monitors while they are in use.
D) Performing any other communications with the monitors.

The monitor communications routine must be able to identify situations, via the signal routing table,
where multiple sinks cannot probe or otherwise communicate simultaneously due to shared hardware
issues. It is responsible for time-slicing the sink communications traffic and/or blocking the use of a
sink while a contending sink is in use. When a communications task will affect an application, the
monitor communications routine must signal up to the higher layers and wait for them to perform any
necessary housekeeping before proceeding.

The monitor communications routine may elect to play games with using the sinks as a source of IRQs,
or not -- it may suffice to use a simple periodic task or process. Sinks must be able to communicate
their real-time needs and capabilities to the monitor communications routine.

Since any of the above tasks may be performed while an application is using the sink, solutions which
allow the communications to be interleaved with application access are to be preferred (for example,
though DCC keep-alive might appear nice for detecting monitor removals, a simple query of the sense
pins register is often less entangling.) When this is not possible, the monitor communications routine is
responsible for providing feedback to the higher layers, which will in turn pause the application's
graphics access if necessary, allowing the monitor communications routine to proceed.

Each sink object is endowed with a monitor communications policy which is used by the monitor
communications routine to determine the actions performed by a sink to detect monitor insertion and
removal. It is user configurable, but is initialized to conservative defaults.

Settings contained in the monitor communications policy include:
1) For each possible detection method: pin sense, DDC, DDC2, etc.
A) Whether or not to use this method

B) Whether to search the orphans in the monitor pool when detection is successful

The KGI Project
14 /35

C) Whether to remove orphans from the monitor pool after use or just use them as a template to
copy from

D) Whether to consider the monitor usable if no match is found among the orphans.
E) Various method-specific parameters (timeout intervals, etc.)
F) Whether to orphan monitors to the monitor pool after they are removed.

2) Parameters controlling how aggressively the system tries to preserve the ability of an application to
remain running throughout a monitor swap, including such things as whether ergonomics are a higher
priority than application transparency.

3) A list of alternate graphics applications which may be given control of the graphics hardware
automatically if the current application cannot be accommodated by a new monitor. This list is set
based on system security policies or explicit user preferences, and is relayed via layer 2.

4) A flag that forces re-detection/inquiry when a policy is changed. For example, this allows a monitor
which was configured with a conservative default policy to be reconfigured through more advanced
means.

A very conservative monitor communications policy and monitor pool will be enacted as a default.
This will cause detection to use only simple pin sense, and will only instantiate a copy of a default
monitor template with extremely strict, hard-coded, timing values that are deemed to be the safest
possible. (Note that if fossil-ware like EGA, 8514, and MDA is to be supported, different templates are
needed.)

(A less conservative policy/pool, which is advised for use by the operating system post-boot when
operating with no information about expected/supported monitors, is to allow DDC detection, but not
to ramp up DDC to full bit rate at first -- use a known safe video mode and only enter high bit rate after
it is determined that the monitor can tolerate it. However, administrators are welcome to customize this
behavior at their leisure/peril, which may be desired for quick response with KVM switches, for
example.)

The KGI Project
15735

4.Second Layer
What's needed?

Q. Shouldan application'sframebuffer VRAMbe preservedwhenit is " switchedaway" or "losesfocus"?

A. In an ideal world, yes. In reality, this would use far too many resources to be practical, and too few
applications really need such support, since they can either redraw or skip frames. As a compromise,
this design proposes that it be possible to lock an application's framebuffer into VRAM when enough
resources are available to do so. However, support for automatic shadowing of framebuffer contents
into RAM, while not obstructed by the proposal, is not advised. Those rare applications that must
preserve computationally expensive framebuffer content should handle their own back-buffer system.

Q.Canandshouldan applicationthatis runningin the background,not displayedon any monitors, still
beallowedto accessthe GPUandrunas if it weredisplayed?

A. Depending on the hardware, it is possible to run multiple graphics applications through the GPU
even if only one of them is displayed. Primarily, the hardware would have to have a clean separation
between the CRTC and the GPU such that the programming of the CRTC does not affect the operation
of the GPU (most newer hardware does.)

Even when MMIO and/or GART hardware has limitations on the number of regions it can map into
physical memory space, multiple applications could be given non-intersecting slices of the overall
mapping in their virtual address space, thus ensuring that they cannot trivially access each other's data
areas.

This should only be done if all of the applications can fit all their resources into the VRAM and GART
at the same time. There is really no benefit for allowing storage areas to be shared via time-slicing
because restoring the contents of framebuffer, texture cache, etc, is not an operation that should be done
at every context switch. Furthermore, reprogramming GTLBs to allow GART address space to be
shared between two private RAM areas is also not an operation well suited for context switches.

When considering multiple GPU contexts, this is almost identical to the case where multiple “direct
accelerated access” applications utilize the GPU in a cooperative suite like X11. The only difference is
that the number of registers which must be restored when switching from one GPU context to another
will be greater, as they may need to alter the base definitions of the location and layout of the
framebuffer, not just 3-D drawing engine registers.

The proposed design takes this option into account and implementation of this scenario is provided for
by the ability to simultaneously commit graphics resources to different applications. Whether support
for running background applications should be implemented on a given OS, however, is a decision best
left to the OS developers.

It is the position of this paper that even if the OS developers decide against this, there is no benefit to
be gained by crippling the proposed design; the general structure should be preserved and no shortcuts
taken in this respect such that the structure is the same as it will be on other operating systems which do

The KGI Project
16/35

decide to implement such support, for code sharing purposes.

Q. Howdo wetreat multi-headedcards-- like one desktopwith a few monitors,or as separate
framebufferscapableof runningan applicationon eachmonitor?

A. Both. By separating the management of buffer space from the management of sequencers/monitors,
the proposed design adopts a new conceptual model that allows for more flexible control of multi-
monitor cards. It is not necessary to decide exclusively on one or the other paradigm for multiple
monitor use, only to consider the effect on any “virtual console” system provided by the OS, since
changing which application is displayed on a multi-display desktop must provide notification to all
affected applications. (The OS console system is considered merely a user, albeit a special one, of the
proposed design, and the needs of all flavors of console systems are accommodated.)

Layer 2 Summary

Layer 2 ties layer 1 components together into a simpler model more resembling today's conventions. It
hides most of the complexity surrounding monitors in layer 1. It also defines the method by which layer
1 valets create simpler, more usable, objects. Graphics applications that do not use any acceleration
could conceivably use layer 2 concepts exclusively, as they are sufficient to define a simple
framebuffer and set a video mode.

Overview of Layer 2 objects

Lot

A "lot" is some quantity of storage or address space allocated using the "valet" objects from level 1. It
hides all unwanted details about system resource allocation.

Spot

A "spot" is a subarea of a lot. This is not necessarily a contiguous area, as a spot may have a strided
memory layout. A spot also serves as a indication (from the application to the graphics subsystem) as to
the intended use of the underlying area -- e.g. as framebuffer data, or texture data, or overlay data, or
GPU commands. In most cases, this data is merely informational unless layer 3 "proofreading"
(described in the next section) is in use, though it could otherwise be potentially useful in resolving
contention between cooperative applications in a suite.

Slide

A "slide" is just a spot that has additional information as to higher level access alignment restrictions.
For example, a spot can tell you where textures can be sourced from, but it cannot tell you the fact that
certain kinds of textures must start on a 32-byte boundary or that they have size restrictions. This extra
information is mostly advisory in the case of textures, since card drivers should know this information
already, but it could be useful to non-driver-specific graphics memory management code in the
application. Slides are also used by "lens" objects for tasks such as panning/wrapping of the main

The KGI Project
17735

framebuffer by the console system.

Lens

A "lens" represents the ability to take the contents of a spot or slide and send them to a given
combination of prisms/sinks. A lens defines a subarea of a spot or slide, within the restrictions imposed
by the underlying object, and controls any expansion, transformation, or peripheral-side positioning
performed on the data contained in this subarea. Thus, a lens is the primary type of object used to
manipulate the CRTC offset, turn on pixel doubling, position cursor or video overlays, tweak video
scaling/sub-sampling, etc.

Special lens objects exist that can initiate power saving states -- feel free to call these "lenscaps" if you
cannot resist doing so.

Description of lot operation

A lot object is obtained from layer 1 valets by specifying the size of the required resource. The
attributes of the returned storage are inferred by the combination of valets specified. The lot object
must be able to provide enough information about the underlying storage to allow the application
and/or the higher layers to utilize the storage, but other details about the storage are opaque.

A lot object need not necessarily represent a permanent allocation of resources. For certain usages, like
framebuffer, it may be desirable to designate a set of lots of which only a limited number may be active
at a time, thus sharing limited resources. A lot provides for temporary deactivation of its claim on
underlying resources. In a security sensitive environment, this includes disposing of any data contained
in the resource before turning it over to other lots which share the resource. For maximum flexibility, a
lot also provides a relocation mechanism — through which the actual address of underlying resources
may be reassigned when it is reactivated. (Usually this will only happen to the GPU-side address.)

The mapping of which lots may be simultaneously active is contained in a "lot link table" which also
contains details to handle relocation. Since such a complex system may not be desirable, it is not
required in this proposal that lots actually be dynamically relocatable or even capable of sharing
resources, so this table is optional (access to the table is not done directly, but through a functional
interface centered around the lot object.) However, in the interest of code sharing it is encouraged that,
when used from the application or from the higher layers, lots be treated as though these features are
available, and checked for activation failures, status changes, or relocation before use.

Description of spot/slide operation

The owner of a lot is allowed to divide it up into spots and slides as they deem fit. In most cases, the
lower layers do not even need to know about the intended usage of the subareas of lots -- they either
have no implications for security, or security mechanisms can deduce whether security is maintained
simply by examining the commands sent to the GPU. Most of the information needed for security is
provided by the fact that sensitive usage areas like GPU command buffers require different storage
configurations (e.g., must be mapped through the exeqd valet) and as such, are separated into different

The KGI Project
18735

lots.

However, such advisory information from the application can make security related code significantly
less complex. Whether to implement advanced security features is a decision left to OS developers, but
for code sharing purposes, it is strongly encouraged that spots and slides be “requested” through an
access API by the application and/or higher layers. On systems which do not require this information,
the API should simply ignore the proferred advice and signal success back to the caller. Thus spot/slide
instances are maintained on the application or higher layer level, and may or may not be shadowed at
layer 2 depending on the supported features of the given OS.

Description of lens operation

Lenses are used to tie together layer 1 objects into a working display. This can be as simple as selecting
a single sink to handle a fixed framebuffer and presenting it's lut to the application for manipulation.
However, lenses may also combine a larger set of layer 1 objects into a more sophisticated system.

For example, a lens might control two sinks, one representing the LCD of a laptop, and the other
representing an attached CRT. The attached CRT usually supports many more resolutions than the
LCD. The lens defines the behavior desired when an application tries to change the resolution. This is a
policy decision -- the LCD could be blanked when large resolutions are in use, or the application could
be told that the only resolutions supported are those supported by both the CRT and the LCD.

Multiple lenses may also share certain attributes in order to link some behaviors of independent sinks.
For example, two lenses might bond the lut objects of their sinks together causing palettes or gamma-
maps on both lenses to behave as one.

As such, lens objects are registered into a "lens link table", similar to the signal routing table on layer 1,
which defines the relationship, if any, of each lens to the others, and assigns prisms,sinks, spots and
slides to lenses.

It should be mentioned that the "spot", "slide", and "lens" objects are sufficiently abstract to extend
their usage into the application area for other facilities such as controlling the properties of video
overlays. However, this proposal is not concerned with such activities past the point where the
application requires privilege elevation. Though the concepts and possibly even the object constructs
themselves may be of use for these purposes, it is not suggested in this proposal that any kernel code or
superuser daemon be required to actually use them for such purposes, with the possible exception of
virtual console systems utilizing a hardware cursor feature.

The KGI Project
19735

5.Third Layer
What's needed?

Q. Howdo multipleapplicationsusingthe GPUacceleratorworktogetherwithoutinterference?

A. There are three ways to do achieve this result, and this proposal allows OS and driver developers to
decide which of the methods are worth the effort to support. This decision should not me made lightly,
as it has a major impact on the requirements imposed on the much larger user application codebase.

The first way is to only allow one application (like an X server) to talk directly to the GPU, and for all
other applications to use a protocol (like X11) to request drawing operations. However, the introduction
of an abstract API at the "command pipe" level obviously presents obstacles that prevent applications
from realizing the full potential of underlying hardware, and introduces latency and extra resource
utilization into the system.

The second way is to allow only one application to access the GPU at a time, but to allow the
applications to be sent a signal causing them to pause. When resumed, the application is sent a second
signal which informs it that it is necessary to restore any settings which it is counting on the GPU to
retain. This method is suitable only for environments where these switches between applications do not
happen very frequently (for example, a virtual console system), as the latency incurred in the handshake
between applications and the graphics system would severely hurt performance were the handshakes to
occur too often. It also requires applications to be capable of fully restoring the settings of GPU
registers.

The third method is to "virtualize" the GPU such that several GPUs are emulated in software. In this
solution the graphics system must automatically save and restore state when different virtual GPUs are
used. Several suggestions have been made as to how this system would work. It has been suggested that
each process be given a virtual GPU "context", and also that each thread be given a virtual GPU
"context.” This design asserts that tying the GPU context to either the process or thread is not necessary
and creates unwanted entanglement with the operating system. Moreover, even a single-threaded
process may have a need for multiple virtual GPUs. In this case, the simplest solution also happens to
be the most flexible solution: when a graphics application needs to send commands to the GPU, it
specifies which virtual GPU the commands belong to. This only requires of applications that they hold
on to GPU context identifiers, and use a specific mechanism to introduce commands for processing -- a
much easier modification to preexisting code than either of the above.

Q. Inwhatformatshouldan applicationsend commandsto the graphicssystem?

A. There is a big clash between two paradigms involved in this question, which has resulted in years of
vacillation and discord in the Open Source community.

One paradigm is that of presenting applications with an abstracted API for graphics commands. In this
school of thought, applications should send commands in a standard format regardless of the hardware
being used.

The KGI Project
20/35

Another paradigm is that of presenting applications with virtual access to the raw hardware. This
implies that applications will supply driver code for the hardware and pre-format the commands in a
form native to the hardware.

The first paradigm is criticized highly for creating "yet another API" — a middleman where none is
needed, since application libraries like OpenGL already provide a standardized interface for common
graphics tasks. The second is criticized because it allows the application too much latitude, requires a
larger codebase, and makes it difficult to virtualize the hardware for multiple applications.

Most often a hybrid system is invented as a compromise. For example, as of this writing, in Linux
DRM raw graphics commands are used for drawing primitives, but vector tables are loaded through an
abstracted APIL.

This design asserts that the second paradigm should be applied wherever possible, and the first should
be avoided, for the following reasons:

1) Using the native hardware graphics language is what many existing codebases do, either
directly or through a userspace driver library like OpenGL, and as such translating code to use
any new API hinders the process of porting that code to the new graphics system. While the first
paradigm does not require application-side driver code, the fact is that that code is already
written, and in fact, the likely result of creating a new API is that a pseudo-driver for that API
will have to be written for popular graphics libraries, and those libraries will continue to
maintain application-side drivers anyway, so there will still be massive levels of code
duplication.

2) Driver-side decoding of native graphics commands sent by the application, when necessary,
is rarely more difficult than creating native graphics commands from parameterized abstract
APIs, and for some purposes can actually be more optimal. The difficulty and required code size
of virtualization of raw format command FIFOs has been somewhat exaggerated.

3) Mixing the two paradigms in a hybrid system results in situations where synchronization
between API-based functionality and raw command functionality is necessary. Such
synchronization often must occur across a less than optimal boundary such as a context switch,
and could even tangle up with task scheduling under some models.

4) Abstraction, while a tried and true technique for many other purposes, often leads to
orphaning of hardware and hardware features which do not fit the model used by the abstractor.
In this case it is misapplied.

5) If required, extra functionality that engages non-graphics system facilities can just as easily
be accessed from within a native GPU command stream simply by using locally-significant
extensions to the native graphics command language — a simple escape code in the native
command stream can be followed by OS-local coded commands. There is no absolute need for
an all-inclusive API in order to utilize such facilities.

As such, this proposal suggests that all communications from the application to the GPU, other than

The KGI Project
21735

that first used to initialize access to GPU resources and to de-initialize them after use, be done through
command buffers containing a locally extended version of the native command language which
encapsulates any special requests that require interaction with other system facilities. The only
exceptions made are for bidirectional communications, which are only really needed for
synchronization mechanisms in common usage.

Q. Shouldall graphicscommandsbe sentto the GPUby the kernel, directly by the application,or by a
userspacedaemon?

A. Allowing individual applications free access to sensitive GPU registers creates prohibitive obstacles
to extending the graphics system gracefully into the properly virtualized form that is so badly needed
on modern operating systems, and is in general a threat to overall system stability and security. There
are good arguments for and against both of the latter two options.

A keystone argument against a centralized userspace daemon is that of the latency incurred in
communications between applications and the daemon. However, this argument is significantly
diminished in some OS environments by optimizations in adaptive and real-time scheduling.

Another argument is that for some functionality like handling IRQs, kernel-side code is essential.
However, a hybrid system where only those aspects that must be handled kernel-side are so located is
certainly feasible.

A compelling argument against placing functionality entirely in the kernel is that it drastically increases
the quantity of graphics driver code which must be implemented kernel-side, and that constitutes a lot
of very complex code to be developed and maintained in an environment that many developers are
afraid to even touch.

The proposed design recognizes that this decision must be made on a case-by-case basis by developers
of the OS. As such, it does not demand either approach. The design refers to an exeqd "process" but
this is not an implication that the routines performed are necessarily performed in userspace, it is
simply a name for the ongoing job of serializing and dispatching GPU commands.

Certainly, some level of kernel support is needed in order to expose GPU facilities and to share them
between the application and exeqd. As such, the decision on what functionality to place on which side
of the user/kernel boundary can affect performance and system flexibility, most notably:

1) For what purposes various types of RAM and address spaces (for examine, high RAM) can
be used, or the complexity and latency involved in using a given type of RAM or address space
for any given purpose. Such considerations need also include the real-time requirements of
TLB implementations on both the host architecture and inside the GPU.

2) The overall system latency and response to real-time events such as low-water marks and
raster retrace.

3) The latency incurred during powersaving events, context and console switches, and
administrative operations, as resources are reconfigured while the GPU is in use, and the
complexity of the locking systems involved.

The KGI Project
22735

4) Incurred codebase complexity when highly entangled functionality is split across the
boundary.

The astute reader will notice that we referred to two "separable halves" of layer 1, which can be taken
as a hint that all the monitor related code would be an easy candidate for placement in userspace,
whereas the "valets" are more likely to be implemented in kernel space. This proposal does not expect
the division of kernel and userspace code to necessarily occur along the prescribed boundary between
levels 1, 2 and 3.

Summary of layer 3

Layer 3 is responsible for the delivery of packets of commands to the GPU. Virtualization of the GPU
can be accomplished at this layer through context tracking and scheduled serialization of packets from
multiple sources. Layer 3 may also optionally support a "proofreader” that can inspect all commands
before they are allowed to enter the GPU, which can either simply warn about suspicious commands
for debugging purposes, or can render moot any commands that threaten to compromise system
security or stability.

Overview of layer 3 objects

Exeq

An "exeq" is a buffer used to store GPU commands. These commands can be generated by an
application, by objects in the lower layers, or internally inside the exeqd "process". An exeq need not
be stored in ot accessible to the GPU, but if not then the contents must be copied into a second exeq
owned by a lot that is so accessible before being sent to the GPU.

Exeq context

An "exeq context" object is the “handle” that virtualizes access to the GPU, making it appear to the
entity that employs it as though it has exclusive access to the GPU, with two exceptions. First, the
virtualization does not extend into the area of memory management, which is effectively virtualized on
a per-process basis by the layer 2 lot objects. Many exeq contexts can share the same memory layout.
Secondly, hardware (a.k.a. "shadow") context features are reserved for internal use by the graphics
system, to make this virtualization more efficient (emulation of these may be considered as an option.)

Control block

A "control block" is a buffer used to pass status information back and forth between the exeqd
"process" and the application regarding a set of exeq objects. This includes applying various flags to
the exeq objects which affect their behavior, assigning exeq objects to exeq contexts, and an advisory
latch scheme for synchronization between the exeqd "process" and the application.

The KGI Project
23/35

Description of exeq operation

The exeq object is chosen usually to be the native architecture page size. For large operations that must
be atomic in respect to the GPU, multiple exegs may be linked together.

The format of the data contained in an exeq is that of the native graphics command language associated
with the underlying hardware, possibly with a few extensions provided to access GPU facilities which
are not included in the command set, or possibly even system facilities useful in conjunction with the
GPU. Most GPU command formats leave ample room for such special commands to be embedded as
otherwise invalid or moot commands.

The process of extending a native GPU command set should not be undertaken lightly, both due to the
time required to parse the exeq, and due to the coherency issues raised by mixing GPU commands with
other functionality. (On the latter point, their presence may force an exeq to be subdivided, or possibly
even force a full idle-down of the GPU, to ensure serialization of the extended commands with the truly
native commands.) Since the control block format is also extensible (not to mention more standardized
in format than the native command stream) a driver should consider that as an alternate avenue for
some functionality. An example of a good exeq extension command is one that deals with display
synchronization issues (e.g. tagging a set of commands to take place immediately after vertical raster
retrace) since a GPU idle may be required in this case anyway.

When multiple applications or threads share an exeq, they must take care to perform their own
scheduling/locking to serialize the use of the exeq. There is no locking service offered by the graphics
system, only advisory latching.

Description of control block operation

A "control block" contains descriptors for a set of exeq objects, and these descriptors can be seen by
both the application owning the exeq objects and the exeqd "process.” It is a two-way communication
line that provides fast updates on the status of exeq objects, and as such a fast mechanism like a shared
page of system RAM is recommended for this use. On SMP systems, write-through caching can also be
of help in the control block to reduce latency.

The core functionality of the control block is to implement a latch system that provides advisory
synchronization. As a lowest common denominator, this can be implemented in the most trivial manner
through a simple two-owner latch -- before data in each control block datum is considered valid for use
by the exeqd “process” the application must write a 1 into a designated bit in that datum. Before the
application writes into a datum in the control block, it must read a 0 from that bit. The application never
writes a 0 into designated bits and the exeqd "process" never writes a 1 into these bits. As such, even in
SMP environments with caching enabled, this advisory locking scheme ensures the integrity of data in
the control block as long as no two of these bits occupy the same atomically modifiable datum. Of
course, more efficient schemes are possible, and the OS is free to employ them. However, in order to
preserve compatibility with this lowest common denominator solution, a bit of each atomically
modifiable datum in the control block should be reserved for this use.

The KGI Project
24735

Each control block contains descriptors of a certain fixed size, chosen by the driver author.
Standardization of the actual format of parts of these descriptors is certainly possible, and likely
desirable, but is something that should be evolved with time and experience. As such, this design
suggests that we only specify the behavior of one datum (actually only a few bits) in the descriptor, and
leaves the rest up to the driver authors for now.

The first datum in each descriptor is used as the primary "trigger" -- it is the first datum that is
inspected to find a status change in the buffer (in the designated bit), only after which are the remaining
data examined. Some of the possible data sent from the application to the exeqd "process" are detailed
in the following list, some items of which could be candidates for immediate standardization.

1) The "trigger" indicating that the exeq should be sent to the GPU

2) The exeq context in which this exeq should be run

3) The number or length of commands contained in the exeq

4) A starting offset into the exeq at which commands start

5) The index of the next descriptor in a GPU-atomic exeq chain

6) The level of content inspection to perform:
A) whether to emit debugging information/stats (and at what level)
B) whether to implement security mooting
C) whether the exeq contains extended commands that must be interpreted
D) whether/how the exeq alters context, for GPU context tracking

7) Sequence numbering to guarantee ordering of multiple exeqgs

When multiple applications or threads share a control block, they must take care to perform their own
scheduling/locking to serialize the use of descriptors. There is no locking service offered by the
graphics system, other than the advisory exeqd latching system.

Description of exeq context operation

Virtualization of the GPU, and thus the exeq context object, is optional, however, without such
virtualization the sharing of the GPU by multiple applications can only be achieved through
cooperative application-side mechanisms outside the scope of this proposal. (The “option” of
implementing a non-virtualized system is presented in order to allow dedicated-use embedded systems
to use a simple codebase while still maintaining compatibility with the overall design.)

An exeq context is created for each virtual instance of a GPU. In order to properly virtualize a GPU, it
is necessary to ensure that the state of all registers in the GPU are stored/restored when an exeq from a
different exeq context than the last one used is sent to the GPU. There are many ways to do this. Which
ones are feasible depends on characteristics of the GPU hardware, and as such, the method used is
chosen by the author of the driver code for a given chipset.

The KGI Project
251735

Firstly, some GPUs support multiple contexts through the use of "shadow" registers or through
saving/restoring state in VRAM. While this feature can be used to speed up the process of saving and
restoring context, it is sometimes the case that the number of hardware supported "shadow" contexts is
limited, or that some register subsets are not handled by this mechanism. As such these hardware
features will often only be useful as an optimization for one of the subsequent techniques.

A trivial way to approach this problem is to idle the GPU before an exeq context switch and read its
register contents into the outgoing exeq context object, then restore the register contents from the
incoming exeq context and restart the delivery of exeq objects to the GPU. Though the proposed design
allows for this simple approach, there are two problems with it:

1) GPUs may contain write-only registers which cannot be read back out, making it impossible
to save and restore some values in such a fashion.

2) Idling the GPU causes an introduction of latency into the command stream, and will limit
performance in situations where exeq contexts are switching back and forth rapidly.

A second method is to inspect all commands before they are sent to the GPU, and calculate changes to
the register values from the inspected commands, storing them in the exeq context. This offers the
advantage of eliminating the step of reading register values back out of the GPU. However, this method
also has some serious disadvantages:

1) The work of inspecting the commands requires processing resources which can significantly
slow down the overall performance of the system.

2) The creation and maintenance of the code necessary to inspect the commands can represent a
fairly large workload for the driver author.

It is the position of this proposal that the second method, once mitigating techniques are applied, is
superior. The subtler methods are discussed towards the end — more brutally, the first factor above can
be mitigated over time by teaching applications to separate context-altering commands into different
exeqs, and use the advisory system described above in the control block objects to cause only those
exeqgs to be thoroughly inspected. That would not be a huge chore for many applications developers
since setup of less frequently altered registers is quite often tucked away in discrete areas of the
application code.

(It 1s also possible, though cretinous, for the chipset driver author to simply demand of the application
that some of the more commonly altered context be considered local to a given exeq, and
unconditionally restored by the application using commands at the beginning of each exeq. This would
be a good way for a partially complete driver to be alpha-tested with a custom application/library, for
example.)

Furthermore, when security mooting or debug proofreading is turned on, the second factor is mitigated
since the process of inspecting commands is performed unconditionally on all exegs. When combined
with proofreading/mooting, the cost of context tracking is insignificant.

The two methods above can also be combined in a hybrid approach. For example, this would allow the

The KGI Project
26/35

second method to be used to handle write-only registers, while other registers are read back out of the
GPU as per the first method.

A mature, optimized, driver might elect to divide the register state into sections or perform a
differential comparison of register states to limit the amount of restoration work needed. In addition,
since entire subsets of registers can be made moot in hardware by switches in other registers, the driver
could elect to restore the content of these subsets only when those switches are turned on. Finally, when
default register values assigned at the initialization of a GPU are factored in, untouched register sets
might be ignored by the driver. The resulting "lazy context" system could reduce the overhead of exeq
context switching considerably.

Another optimization is for the exeq context to store register state in a preformatted exeq which can be
dumped directly into the GPU. Such an exeq could be stored in VRAM for fast access by the GPU.
Preformatted exegs containing commands to read the values are usually possible, and in some cases the
GPU can even store the results in VRAM directly.

When taken together, the above methods offer the potential to retain decent graphics performance even
while performing emulation of a fully virtualized GPU. The tradeoff is code complexity versus
performance, which is a good tradeoff to have because it lends itself to gradual development of
optimized code while full functionality is available from the outset. Or to put it in more famous words,
we can "first make it work, then make it work well."

Description of the exeqd "process"

As stated above, this design does not mean to imply that the exeqd "process" is necessarily a userspace
daemon, which is it has been carefully referred to this way up to this point. With that clear, it will just
be referred to as the exeqd in this section.

The exeqd handles the actual delivery of GPU commands contained in exegs from the application to the
GPU. Depending on the flags assigned (via the control block) to the exeq, it may also delete or alter the
commands for security or debugging purposes, or may perform extra functionality not available in the
hardware's native command set.

The exeqd distinguishes between three kinds of exeqs:

1) The first kind of exeq is a "command request exeq" which contains GPU commands written by the
application. These exegs must be mapped into the process virtual address space of the application, as
the process must be able to write commands into them. They will also be mapped into exeqd's virtual
address space, as exeqd may need to copy or inspect the buffers.

2) The second kind of exeq is a "command dispatch buffer" and contains finalized GPU commands to
be sent to the GPU. These exegs must be mapped into exeqd's address space, as exeqd must be able to
write commands into them. When the GPU is being fed by DMA or AGP, these buffers must be
mapped into appropriate hardware address spaces as well.

3) The third kind of exeq is an "internal command request exeq" and is generated from within exeqd

The KGI Project
27135

itself, or by objects in layerl or layer2 to inject asynchronous events into the GPU command stream
(including, most importantly, GPU context switches.) These exegs are used, rather than direct access to
GPU hardware registers, because doing so relieves several tricky synchronization and coherency
problems that would occur were access to be performed directly on GPU registers through another
route. It also makes exeqd a central choke point where almost all access to the GPU(s) must pass,
which can make debugging much easier by keeping stray 1O primitives out of the rest of the code.

The proposed design allows for, but does not require, OS developers the option of implementing a O-
copy mechanism. If the OS can be configured to do so with a net performance gain (avoiding much
TLB and GTLB work) then command request exegs may be sent directly to the GPU, bypassing a copy
into a command dispatch exeq. This can only happen if:

1) These command request exeqgs are also mapped into the appropriate hardware address spaces the
same way as command dispatch exeqgs are.

...and either...
2a) Security censoring of command request exeqgs is not enabled or is used in a merely advisory role.
...Ol...

2b) A mechanism for allowing exeqd to prevent applications from writing to a command request exeq
between the start of inspection and the end of GPU execution can be efficiently implemented.

It is the position of this paper that even if OS developers decide against this, there is no benefit to be
gained by crippling the proposed design; The general convention of treating "triggered" exegs as non-
writable and non-readable until exeqd flags them as finished should be observed by application code,
even though the system may be purely advisory. No shortcuts in userspace code should be taken, such
that the structure is the same as it will be on other operating systems which do decide to implement
such support, for code sharing purposes.

As exeqd lumps together callback functions registered from multiple drivers, it will mostly be a simple
scheduler and a collection of convenience functions helping those drivers to perform their own exeq
management. As the format of control block descriptors becomes more standardized, more
functionality can be extracted from the drivers and provided as part of exeqd.

Author's note: Although this proposal remains flexible as to the prospect of placing exeqd in
userspace, OS developers are encouraged to consider the future direction of graphics computing,
specifically with regards to highly parallel architectures such as the upcoming Cell Broadband
Engine. One could surmise that systems where a dedicated mainboard CPU core handles graphics, or
where the GPU supports enough of a general instruction set to itself be the host processor for exeqd,
will become more prevalent in the future. As such, strong consideration should be given to kernel-
space implementation.

The KGI Project
281735

6.APPENDIX

GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves
for the author and publisher a way to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated
herein. The "Document”, below, refers to any such manual or work. Any member of the public is a

The KGI Project
291735

licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in
a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document's
overall subject (or to related matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of historical connection with the subject
or with related matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs
or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters
or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in
an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called
"Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-

The KGI Project
30/35

conforming simple HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats
that can be read and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML, PostScript or
PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means the text near the most prominent
appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications",
"Endorsements"”, or "History".) To "Preserve the Title" of such a section when you modify the
Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to
the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of
this License. You may not use technical measures to obstruct or control the reading or further copying
of the copies you make or distribute. However, you may accept compensation in exchange for copies. If
you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,

The KGI Project
31/35

numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the
front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly
identify you as the publisher of these copies. The front cover must present the full title with all words
of the title equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each
Opaque copy a computer-network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy of the Document, free
of added material. If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2
and 3 above, provided that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the

The KGI Project
32735

modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the "History" section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or
all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the

The KGI Project
33/35

Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements”, provided it contains nothing but endorsements of your
Modified Version by various parties--for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by)
any one entity. If the Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you may not add another;
but you may replace the old one, on explicit permission from the previous publisher that added the old
one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of
the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve all their Warranty
Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if known, or else a unique
number. Make the same adjustment to the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled
"Endorsements".

The KGI Project
34/35

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation's users beyond
what the individual works permit. When the Document is included in an aggregate, this License does
not apply to the other works in the aggregate which are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a translation of this
License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

The KGI Project
35735

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for
under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

